
Introducing Different Regression 
for Different Analysis

Dr. Wing Wahyu Winarno, MAFIS
STIE YKPN (YKPN School of Business) Yogyakarta
wing@stieykpn.ac.id

This presentation was delivered at the Konferensi Ilmiah Akuntansi XI and 1st International Conference held by Faculty of Economics and Business Atma Jaya 
Catholic University of Indonesia and Institute of Indonesia Chartered Accountant, Educator Accountant Compartment (IAI KAPd) in Jakarta, 7-8 March 2024.



Ordinary Least Squares (OLS) Regression

Regression analysis 
(especially multiple 
regression) is a popular 
statistical analysis tool 
among researchers. This 
analysis requires the 
presence of a dependent 
variable and several 
independent variables.

So far, what is widely known 
is OLS multiple regression 
with various assumptions 
that must be met. If the 
assumptions are not met, 
then the regression model is 
considered inappropriate.

But actually, there are 
different types of regression 
that can be used for various 
conditions. In this exposure 
will be shown different types 
of regression for various data 
conditions.



Ordinary Least Squares (OLS) Regression

Ordinary Least Squares 
(OLS) regression is a 
fundamental statistical 
method used for estimating 
the relationships between a 
dependent variable and one 
or more independent 
variables.

It is the most common 
method of linear regression, 
providing a way to model the 
linear relationship between 
the explanatory (indepen-
dent) variables and the 
response (dependent) 
variable.

The primary objective of OLS 
regression is to find the best-
fitting line through the data 
points that minimizes the 
sum of the squared diffe-
rences (residuals) between 
the observed values and the 
values predicted by the 
linear model.
This line is known as the 
regression line.



Ordinary Least Squares (OLS) Regression

The regession line is represented by the equation:

where
• Y is the dependent variable
• X1, X2,…,Xk are the independent variables
• 0 is the intercept
• 1, 2, …, k are the coefficients of the independent variables
•  is the error term, representing the difference between the observed and 

predicted values



Ordinary Least Squares (OLS) Regression

Analyzing residual plots 
to detect non-linearity, 
heteroscedasticity, and 

outliers.

Conducting statistical 
tests for normality of 

residuals.

Checking for 
multicollinearity 
through variance 

inflation factor (VIF) 
analysis.

It's crucial to assess the model's fit and check whether the assumptions of 
the OLS model are met. This involves:



Linearity

Key assumption in Regression Models

Independence

Autocorrelation
(serial correlation)

Homoscedasticity

The relationship between the independent variables and the dependent 
variable is linear.

The residuals are independent across observations.

Specifically refers to the correlation of a variable with itself across 
observations ordered in time or space.

The variance of the residuals is constant across all levels of the independent 
variables.

Normality
The residuals are normally distributed (particularly important for hypothesis 
testing).

No perfect 
multicollinearity

The independent variables are not perfectly linearly related.



Thank you



Regression with Categorical Data

Logistic Regression

Probit Regression

Poisson Regression

Negative Binomial 
Regression

It estimates the probability that a given input (or set of inputs) belongs to a particular 
category (usually denoted as 1) versus the probability that it belongs to the other 
category (denoted as 0).

Probit regression models the probability that an observation falls into one of two 
categories. It uses the cumulative distribution function of the standard normal 
distribution (the probit function) to model the probability.

Poisson regression can be adapted for dichotomous data, especially when dealing 
with rates or counts per unit of exposure. It models the log of the expected count as a 
linear combination of the independent variables.

This is an extension of Poisson regression used for count data that exhibits 
overdispersion, where the variance exceeds the mean. It can also be adapted for 
dichotomous outcomes, particularly in counts with high variability.

Generalized Estimating 
Equations (GEE)

GEE is used for correlated or clustered categorical data, extending generalized linear 
models to accommodate correlated observations. It's particularly useful in 
longitudinal data analysis and the responses are binary.

Generalized Linear 
Models (GLMs) 

GLMs are a flexible generalization of ordinary linear regression that allows for 
response variables that have error distribution models other than a normal 
distribution.



Regression with Nonlinearity

Robust Regression

Quantile Regression

Generalized Linear 
Models (GLMs)

Nonparametric 
Regression

Robust regression methods are designed to be less sensitive to outliers than ordinary least 
squares (OLS) regression, thereby providing more reliable estimates when the data contain 
outliers or are not normally distributed. Also: Huber regression and Quantile regression

Unlike OLS regression, which estimates the mean of the dependent variable given the 
independent variables, quantile regression estimates the conditional median or other 
quantiles of the dependent variable.

GLMs extend linear regression to models where the dependent variable is not necessarily 
normally distributed. GLMs are useful when dealing with data that exhibit characteristics 
such as skewness, kurtosis, or heteroscedasticity.

Nonparametric regression, such as kernel smoothing and spline models, do not assume a 
specific functional form for the relationship between the IVs and DVs. These methods are 
flexible and can model complex relationships without assuming normality in the residuals.

Transformation of 
Variables

Transforming the dependent and/or independent variables can sometimes resolve issues 
of nonnormality. Common transformations include logarithmic, square root, and Box-Cox 
transformations.



Regression with Multicollinearity
Ridge Regression (L2 
Regularization)

Lasso Regression (L1 
Regularization)

Elastic Net Regression

Principal Component 
Regression (PCR)

Ridge regression is particularly effective at dealing with multicollinearity by adding a 
penalty term to the loss function, which is proportional to the square of the coefficients. 
This helps to reduce the variance of the coefficients, leading to more stable estimates. 

Lasso regression also modifies the loss function to include a penalty term, but this time the 
penalty is the absolute value of the magnitude of coefficients. This can lead to some 
coefficients being shrunk to zero, effectively performing variable selection.

Elastic Net is a middle ground between Ridge and Lasso regression. It combines the 
penalties of Ridge and Lasso, thus benefiting from both the variable selection feature of 
Lasso and the ability to handle multicollinearity of Ridge.

PCR can be effective in handling multicol by reducing the dimensionality of the data before 
regression, using PCA. By regressing on the principal components instead of the original 
correlated variables, PCR mitigates the multicollinearity issue.

Partial Least Squares 
Regression (PLS)

PLS is similar to PCR in that it projects the predictors and the response variable into a new 
space. However, unlike PCR, which only considers the IVs, PLS takes into account the DV as 
well, aiming to find the multidimensional direction in the predictor space that explains the 
maximum multidimensional variance direction in the response space.



Regression with Autocorrelation
Autoregressive 
Integrated Moving 
Average (ARIMA)

Generalized Least 
Squares (GLS)

Durbin-Watson 
statistic

Cochrane-Orcutt or 
Prais-Winsten 

ARIMA models are specifically designed for time series data to predict future points in the 
series. They incorporate three main components: autoregression (AR), differencing (I) to 
make the series stationary, and moving average (MA).

GLS is an extension of OLS that allows for modeling of hetero directly through the specifi-
cation of the covariance matrix of the errors. By assuming a particular form of hetero, GLS 
adjusts the estimation process to account for it, leading to more efficient estimates.

While not a regression method itself, the Durbin-Watson statistic is a widely used test for 
autocorrelation in the residuals of a regression analysis. It provides a measure of the extent 
of autocorrelation.

These methods are modifications of the OLS to correct for autocorrelation, specifically for 
the first-order autocorrelation. They involve iteratively estimating the parameters of the 
regression model and the autocorrelation coefficient.

Vector 
Autoregression (VAR)

VAR is a system of equations model where all the variables are treated as endogenous. This 
method is particularly useful for multivariate time series data, where each variable is 
modeled as a function of past values of itself and past values of all the other variables. 



Regression with Heteroscedasticity

Weighted Least 
Squares (WLS)

Generalized Least 
Squares (GLS)

Robust Regression

Quantile Regression

WLS is a variation of OLS that assigns weights to each data point based on the inverse of the 
variance of its error term. By doing so, WLS helps to ensure that observations with smaller 
variances have a larger influence on the estimation of the regression coefficients.

GLS extends the WLS to more complex forms of hetero & also addresses issues of correla-
tion between error terms. GLS uses a known covariance matrix of the error terms to trans-
form the original equation into one where the transformed errors have a constant variance.

This method is designed to be less sensitive to outliers and violations of assumptions like 
hetero. Techniques such as Huber regression and quantile regression provide alternative 
fitting procedures that are not as affected by the presence of heteroscedastic errors. 

This regression models the relationship between the Ivs & specific quantiles (percentiles) of 
the DV, rather than the mean. This approach is inherently robust to outliers & does not 
assume homoscedasticity of errors, making it suitable for data with heteroscedasticity. 

Heteroscedasticity-
Consistent Standard 
Errors (HCSE)

HCSE (robust standard errors) is a common approach to deal with hetero. This technique 
adjusts the standard errors of the regression coefficients to reflect the presence of 
heteroscedasticity, allowing for more accurate hypothesis testing.

Transformation of 
Variables

Applying transformations to the DV and/or Ivs can sometimes reduce or eliminate hetero. 
Common transformations include logarithmic, square root, or Box-Cox transformation, 
which can stabilize the variance of the errors across levels of the IVs.



Regression with Nonnormality of Residuals

Polynomial 
Regression

Generalized Additive 
Models (GAMs)

Nonparametric 
Regression

Decision Trees and 
Random Forests

Polynomial regression extends linear regression by considering polynomial terms of the IVs. 
By including squared, cubed, or higher-order terms of the predictors, polynomial regression 
can model curves in the data.

GAMs extend linear models by allowing non-linear functions of each of the Ivs while 
maintaining additivity. Unlike polynomial regression, GAMs use smooth functions, such as 
splines, to model the non-linearities. 

Nonparametric regression methods do not assume a predefined form for the relationship 
between the IVs and DVs. These techniques estimate the relationship by closely following 
the observed data, making them highly flexible for modeling nonlinear trends.

Decision trees model data by splitting it into subsets based on the value of input features, 
making them inherently capable of capturing non-linear relationships. Random forests 
improve upon single decision trees by averaging multiple trees to reduce overfittng.

Support Vector 
Regression (SVR)

SVR applies the principles of support vector machines (SVMs) to regression problems. By 
using kernel functions, SVR can model nonlinear relationships in a high-dimensional space 
where the data might be linearly separable.



Regression with Multicollinearity & Hetero

Ridge Regression (L2 
Regularization)  

Generalized Least 
Squares (GLS)

Elastic Net Regression

Weighted Least 
Squares (WLS)

Ridge regression is particularly effective at dealing with multicollinearity by adding a 
penalty term to the loss function, which is proportional to the square of the coefficients. 
This helps to reduce the variance of the coefficients, leading to more stable estimates. 

GLS is an extension of OLS that allows for modeling of hetero directly through the specifi-
cation of the covariance matrix of the errors. By assuming a particular form of hetero, GLS 
adjusts the estimation process to account for it, leading to more efficient estimates. 

Elastic Net combines the penalties of L1 (lasso) and L2 (ridge) regularization, making it 
capable of addressing multicol by shrinking correlated predictors towards each other. The 
L1 penalty can also help in variable selection, reducing the model complexity.

WLS is a variation of OLS that assigns weights to each observation, which is particularly 
useful for handling hetero by giving less weight to observations with higher variance. When 
combined with techniques to address multicol ,WLS can effectively handle both issues. 

Quantile Regression
Quantile regression estimates the conditional median or other quantiles of the dependent 
variable, rather than the mean. This approach is inherently robust to outliers and can be 
less sensitive to heteroscedasticity since it does not assume a constant variance of errors.

Principal Component 
Regression (PCR)

PCR can be effective in handling multicol by reducing the dimensionality of the data before 
regression, using PCA. By regressing on the principal components instead of the original 
correlated variables, PCR mitigates the multicollinearity issue.
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